Dorsal root compression produces myelinated axonal degeneration near the biomechanical thresholds for mechanical behavioral hypersensitivity.
نویسندگان
چکیده
Increased sensitivity to mechanical stimuli produced by transient cervical nerve root compression is dependent on the severity of applied load. In addition, trauma in the nervous system induces local inflammation, Wallerian degeneration, and a host of other degenerative processes leading to axonal dysfunction. Here, axonal degeneration and inflammation were assessed following transient dorsal root compression to establish a relationship between conditions for dorsal root axonal changes and those previously established for the onset and maintenance of mechanical behavioral hypersensitivity (26.3 mN and 38.2 mN, respectively). Compression loads were applied over a range (0-110 mN) known to produce sustained behavioral hypersensitivity. CD68- and NF200-immunoreactivity, as well as axonal pathological changes, were assessed in the dorsal root to investigate the load thresholds requisite for inducing macrophage infiltration and axonal degeneration relative to those thresholds for producing the onset and persistence of behavioral hypersensitivity. Neurofilament accumulation and the depletion of NF200-immunoreactivity in the region of compressed tissue were produced for loads that produce mechanical behavioral hypersensitivity. A 50th-percentile load threshold was determined (31.6 mN) governing the onset of NF200 depletion. However, CD68-immunoreactivity was increased for nearly all loads, suggesting that macrophage recruitment may not be directly related to nerve root-mediated behavioral hypersensitivity. This study provides new evidence for threshold-mediated degenerative changes in the context of behavioral hypersensitivity following nerve root compression.
منابع مشابه
Mechanical thresholds for initiation and persistence of pain following nerve root injury: mechanical and chemical contributions at injury.
There is much evidence supporting the hypothesis that magnitude of nerve root mechanical injury affects the nature of the physiological responses which can contribute to pain in lumbar radiculopathy. Specifically, injury magnitude has been shown to modulate behavioral hypersensitivity responses in animal models of radiculopathy. However, no study has determined the mechanical deformation thresh...
متن کاملRiluzole effects on behavioral sensitivity and the development of axonal damage and spinal modifications that occur after painful nerve root compression.
OBJECT Cervical radiculopathy is often attributed to cervical nerve root injury, which induces extensive degeneration and reduced axonal flow in primary afferents. Riluzole inhibits neuro-excitotoxicity in animal models of neural injury. The authors undertook this study to evaluate the antinociceptive and neuroprotective properties of riluzole in a rat model of painful nerve root compression. ...
متن کاملChemical and mechanical nerve root insults induce differential behavioral sensitivity and glial activation that are enhanced in combination.
Both chemical irritation and mechanical compression affect radicular pain from disc herniation. However, relative effects of these insults on pain symptoms are unclear. This study investigated chemical and mechanical contributions for painful cervical nerve root injury. Accordingly, the C7 nerve root separately underwent chromic gut exposure, 10gf compression, or their combination. Mechanical a...
متن کاملUpregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain
Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron's ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical...
متن کاملControlled release of GDNF reduces nerve root-mediated behavioral hypersensitivity.
Nerve root compression produces persistent behavioral sensitivity in models of painful neck injury. This study utilized degradable poly(ethylene glycol) hydrogels to deliver glial cell line-derived neurotrophic factor (GDNF) to an injured nerve root. Hydrogels delivered approximately 98% of encapsulated GDNF over 7 days in an in vitro release assay without the presence of neurons and produced e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental neurology
دوره 212 2 شماره
صفحات -
تاریخ انتشار 2008